Source code for funsor.testing

# Copyright Contributors to the Pyro project.
# SPDX-License-Identifier: Apache-2.0

import contextlib
import importlib
import itertools
import numbers
import operator
from collections import OrderedDict, namedtuple
from functools import reduce

import numpy as np
import opt_einsum
from multipledispatch import dispatch
from multipledispatch.variadic import Variadic

import funsor.ops as ops
from funsor.cnf import Contraction
from funsor.delta import Delta
from funsor.domains import Bint, Domain, Real
from funsor.gaussian import Gaussian
from funsor.tensor import Tensor
from funsor.terms import Funsor, Number
from funsor.util import get_backend


[docs]@contextlib.contextmanager def xfail_if_not_implemented(msg="Not implemented", *, match=None): try: yield except NotImplementedError as e: if match is not None and match not in str(e): raise e from None import pytest pytest.xfail(reason="{}:\n{}".format(msg, e))
[docs]@contextlib.contextmanager def xfail_if_not_found(msg="Not implemented"): try: yield except AttributeError as e: import pytest pytest.xfail(reason="{}:\n{}".format(msg, e))
[docs]def requires_backend(*backends, reason=None): import pytest if reason is None: reason = "Test requires backend {}".format(" or ".join(backends)) return pytest.mark.skipif(get_backend() not in backends, reason=reason)
[docs]def excludes_backend(*backends, reason=None): import pytest if reason is None: reason = "Test excludes backend {}".format(" and ".join(backends)) return pytest.mark.skipif(get_backend() in backends, reason=reason)
[docs]class ActualExpected(namedtuple("LazyComparison", ["actual", "expected"])): """ Lazy string formatter for test assertions. """ def __repr__(self): return "\n".join(["Expected:", str(self.expected), "Actual:", str(self.actual)])
[docs]def id_from_inputs(inputs): if isinstance(inputs, (dict, OrderedDict)): inputs = inputs.items() if not inputs: return "()" return ",".join(k + "".join(map(str, d.shape)) for k, d in inputs)
@dispatch(object, object, Variadic[float]) def allclose(a, b, rtol=1e-05, atol=1e-08): if type(a) is not type(b): return False return ops.abs(a - b) < rtol + atol * ops.abs(b) dispatch(np.ndarray, np.ndarray, Variadic[float])(np.allclose) @dispatch(Tensor, Tensor, Variadic[float]) def allclose(a, b, rtol=1e-05, atol=1e-08): if a.inputs != b.inputs or a.output != b.output: return False return allclose(a.data, b.data, rtol=rtol, atol=atol)
[docs]def is_array(x): if isinstance(x, Funsor): return False if get_backend() == "torch": return False return ops.is_numeric_array(x)
[docs]def assert_close(actual, expected, atol=1e-6, rtol=1e-6): msg = ActualExpected(actual, expected) if is_array(actual): assert is_array(expected), msg elif isinstance(actual, Tensor) and is_array(actual.data): assert isinstance(expected, Tensor) and is_array(expected.data), msg elif ( isinstance(actual, Contraction) and isinstance(actual.terms[0], Tensor) and is_array(actual.terms[0].data) ): assert isinstance(expected, Contraction) and is_array( expected.terms[0].data ), msg elif isinstance(actual, Contraction) and isinstance(actual.terms[0], Delta): assert isinstance(expected, Contraction) and isinstance( expected.terms[0], Delta ), msg elif isinstance(actual, Gaussian): assert isinstance(expected, Gaussian) else: assert type(actual) is type(expected), msg if isinstance(actual, Funsor): assert isinstance(expected, Funsor), msg assert actual.inputs == expected.inputs, (actual.inputs, expected.inputs) assert actual.output == expected.output, (actual.output, expected.output) if isinstance(actual, (Number, Tensor)): assert_close(actual.data, expected.data, atol=atol, rtol=rtol) elif isinstance(actual, Delta): assert frozenset(n for n, p in actual.terms) == frozenset( n for n, p in expected.terms ) actual = actual.align(tuple(n for n, p in expected.terms)) for (actual_name, (actual_point, actual_log_density)), ( expected_name, (expected_point, expected_log_density), ) in zip(actual.terms, expected.terms): assert actual_name == expected_name assert_close(actual_point, expected_point, atol=atol, rtol=rtol) assert_close(actual_log_density, expected_log_density, atol=atol, rtol=rtol) elif isinstance(actual, Gaussian): # Note white_vec and prec_sqrt are expected to agree only up to an # orthogonal factor, but precision and info_vec should agree exactly. assert_close(actual._info_vec, expected._info_vec, atol=atol, rtol=rtol) assert_close(actual._precision, expected._precision, atol=atol, rtol=rtol) elif isinstance(actual, Contraction): assert actual.red_op == expected.red_op assert actual.bin_op == expected.bin_op assert actual.reduced_vars == expected.reduced_vars assert len(actual.terms) == len(expected.terms) for ta, te in zip(actual.terms, expected.terms): assert_close(ta, te, atol, rtol) elif type(actual).__name__ == "Tensor": assert get_backend() == "torch" import torch assert actual.dtype == expected.dtype, msg assert actual.shape == expected.shape, msg if actual.dtype in (torch.long, torch.uint8, torch.bool): assert (actual == expected).all(), msg else: eq = actual == expected if eq.all(): return if eq.any(): actual = actual[~eq] expected = expected[~eq] diff = (actual.detach() - expected.detach()).abs() if rtol is not None: assert (diff / (atol + expected.detach().abs())).max() < rtol, msg elif atol is not None: assert diff.max() < atol, msg elif is_array(actual): if get_backend() == "jax": import jax assert jax.numpy.result_type(actual.dtype) == jax.numpy.result_type( expected.dtype ), msg else: assert actual.dtype == expected.dtype, msg assert actual.shape == expected.shape, msg if actual.dtype in (np.int32, np.int64, np.uint8, bool): assert (actual == expected).all(), msg else: actual, expected = np.asarray(actual), np.asarray(expected) eq = actual == expected if eq.all(): return if eq.any(): actual = actual[~eq] expected = expected[~eq] diff = abs(actual - expected) if rtol is not None: assert (diff / (atol + abs(expected))).max() < rtol, msg elif atol is not None: assert diff.max() < atol, msg elif isinstance(actual, numbers.Number): if actual != expected: diff = abs(actual - expected) if rtol is not None: assert diff < (atol + abs(expected)) * rtol, msg elif atol is not None: assert diff < atol, msg elif isinstance(actual, dict): assert isinstance(expected, dict) assert set(actual) == set(expected) for k, actual_v in actual.items(): assert_close(actual_v, expected[k], atol=atol, rtol=rtol) elif isinstance(actual, tuple): assert isinstance(expected, tuple) assert len(actual) == len(expected) for actual_v, expected_v in zip(actual, expected): assert_close(actual_v, expected_v, atol=atol, rtol=rtol) else: raise ValueError("cannot compare objects of type {}".format(type(actual)))
[docs]def check_funsor(x, inputs, output, data=None): """ Check dims and shape modulo reordering. """ assert isinstance(x, Funsor) assert dict(x.inputs) == dict(inputs) if output is not None: assert x.output == output if data is not None: if x.inputs == inputs: x_data = x.data else: x_data = x.align(tuple(inputs)).data if inputs or output.shape: if get_backend() == "jax": # JAX has numerical errors for reducing ops. assert_close(x_data, data) else: assert (x_data == data).all() else: if get_backend() in ["jax", "numpy"]: # JAX has numerical errors for reducing ops. assert_close(x_data, data) else: assert x_data == data
[docs]def xfail_param(*args, **kwargs): import pytest return pytest.param(*args, marks=[pytest.mark.xfail(**kwargs)])
[docs]def make_einsum_example(equation, fill=None, sizes=(2, 3)): symbols = sorted(set(equation) - set(",->")) sizes = {dim: size for dim, size in zip(symbols, itertools.cycle(sizes))} inputs, outputs = equation.split("->") inputs = inputs.split(",") outputs = outputs.split(",") operands = [] for dims in inputs: shape = tuple(sizes[dim] for dim in dims) x = randn(shape) operand = x if fill is None else (x - x + fill) # no need to use pyro_dims for numpy backend if not isinstance(operand, np.ndarray): operand._pyro_dims = dims operands.append(operand) funsor_operands = [ Tensor(operand, OrderedDict([(d, Bint[sizes[d]]) for d in inp])) for inp, operand in zip(inputs, operands) ] assert equation == ",".join( ["".join(operand.inputs.keys()) for operand in funsor_operands] ) + "->" + ",".join(outputs) return inputs, outputs, sizes, operands, funsor_operands
[docs]def assert_equiv(x, y): """ Check that two funsors are equivalent up to permutation of inputs. """ check_funsor(x, y.inputs, y.output, y.data)
[docs]def rand(*args): if isinstance(args[0], tuple): assert len(args) == 1 shape = args[0] else: shape = args backend = get_backend() if backend == "torch": import torch return torch.rand(shape) else: # work around numpy random returns float object instead of np.ndarray object when shape == () return np.array(np.random.rand(*shape))
[docs]def randint(low, high, size): backend = get_backend() if backend == "torch": import torch return torch.randint(low, high, size=size) else: return np.random.randint(low, high, size=size)
[docs]def randn(*args): if isinstance(args[0], tuple): assert len(args) == 1 shape = args[0] else: shape = args backend = get_backend() if backend == "torch": import torch return torch.randn(shape) else: # work around numpy random returns float object instead of np.ndarray object when shape == () return np.array(np.random.randn(*shape))
[docs]def random_scale_tril(*args): if isinstance(args[0], tuple): assert len(args) == 1 shape = args[0] else: shape = args from funsor.distribution import BACKEND_TO_DISTRIBUTIONS_BACKEND backend_dist = importlib.import_module( BACKEND_TO_DISTRIBUTIONS_BACKEND[get_backend()] ).dist if get_backend() == "torch": data = randn(shape) return backend_dist.transforms.transform_to( backend_dist.constraints.lower_cholesky )(data) else: data = randn(shape[:-2] + (shape[-1] * (shape[-1] + 1) // 2,)) return backend_dist.biject_to(backend_dist.constraints.lower_cholesky)(data)
[docs]def zeros(*args): if isinstance(args[0], tuple): assert len(args) == 1 shape = args[0] else: shape = args backend = get_backend() if backend == "torch": import torch return torch.zeros(shape) else: return np.zeros(shape)
[docs]def ones(*args): if isinstance(args[0], tuple): assert len(args) == 1 shape = args[0] else: shape = args backend = get_backend() if backend == "torch": import torch return torch.ones(shape) else: return np.ones(shape)
[docs]def empty(*args): if isinstance(args[0], tuple): assert len(args) == 1 shape = args[0] else: shape = args backend = get_backend() if backend == "torch": import torch return torch.empty(shape) else: return np.empty(shape)
[docs]def random_tensor(inputs, output=Real): """ Creates a random :class:`funsor.tensor.Tensor` with given inputs and output. """ backend = get_backend() assert isinstance(inputs, OrderedDict) assert isinstance(output, Domain) shape = tuple(d.dtype for d in inputs.values()) + output.shape if output.dtype == "real": data = randn(shape) else: num_elements = reduce(operator.mul, shape, 1) if backend == "torch": import torch data = torch.multinomial( torch.ones(output.dtype), num_elements, replacement=True ) else: data = np.random.choice(output.dtype, num_elements, replace=True) data = data.reshape(shape) return Tensor(data, inputs, output.dtype)
[docs]def random_gaussian(inputs): """ Creates a random :class:`funsor.gaussian.Gaussian` with given inputs. """ assert isinstance(inputs, OrderedDict) batch_shape = tuple(d.dtype for d in inputs.values() if d.dtype != "real") event_shape = (sum(d.num_elements for d in inputs.values() if d.dtype == "real"),) prec_sqrt = randn(batch_shape + event_shape + event_shape) precision = ops.matmul(prec_sqrt, ops.transpose(prec_sqrt, -1, -2)) precision = precision + 0.5 * ops.new_eye(precision, event_shape[:1]) prec_sqrt = ops.cholesky(precision) loc = randn(batch_shape + event_shape) white_vec = ops.matmul(prec_sqrt, ops.unsqueeze(loc, -1)).squeeze(-1) return Gaussian(white_vec=white_vec, prec_sqrt=prec_sqrt, inputs=inputs)
[docs]def random_mvn(batch_shape, dim, diag=False): """ Generate a random :class:`torch.distributions.MultivariateNormal` with given shape. """ backend = get_backend() rank = dim + dim loc = randn(batch_shape + (dim,)) cov = randn(batch_shape + (dim, rank)) cov = cov @ ops.transpose(cov, -1, -2) if diag: cov = cov * ops.new_eye(cov, (dim,)) if backend == "torch": import pyro return pyro.distributions.MultivariateNormal(loc, cov) elif backend == "jax": import numpyro return numpyro.distributions.MultivariateNormal(loc, cov)
[docs]def make_plated_hmm_einsum(num_steps, num_obs_plates=1, num_hidden_plates=0): assert num_obs_plates >= num_hidden_plates t0 = num_obs_plates + 1 obs_plates = "".join(opt_einsum.get_symbol(i) for i in range(num_obs_plates)) hidden_plates = "".join(opt_einsum.get_symbol(i) for i in range(num_hidden_plates)) inputs = [str(opt_einsum.get_symbol(t0))] for t in range(t0, num_steps + t0): inputs.append( str(opt_einsum.get_symbol(t)) + str(opt_einsum.get_symbol(t + 1)) + hidden_plates ) inputs.append(str(opt_einsum.get_symbol(t + 1)) + obs_plates) equation = ",".join(inputs) + "->" return (equation, "".join(sorted(tuple(set(obs_plates + hidden_plates)))))
[docs]def make_chain_einsum(num_steps): inputs = [str(opt_einsum.get_symbol(0))] for t in range(num_steps): inputs.append(str(opt_einsum.get_symbol(t)) + str(opt_einsum.get_symbol(t + 1))) equation = ",".join(inputs) + "->" return equation
[docs]def make_hmm_einsum(num_steps): inputs = [str(opt_einsum.get_symbol(0))] for t in range(num_steps): inputs.append(str(opt_einsum.get_symbol(t)) + str(opt_einsum.get_symbol(t + 1))) inputs.append(str(opt_einsum.get_symbol(t + 1))) equation = ",".join(inputs) + "->" return equation
[docs]def iter_subsets(iterable, *, min_size=None, max_size=None): if min_size is None: min_size = 0 if max_size is None: max_size = len(iterable) for size in range(min_size, max_size + 1): yield from itertools.combinations(iterable, size)
[docs]class DesugarGetitem: """ Helper to desugar ``.__getitem__()`` syntax. Example:: >>> desugar_getitem[1:3, ..., None] (slice(1, 3), Ellipsis, None) """ def __getitem__(self, index): return index
desugar_getitem = DesugarGetitem()